
A modification of the Wiener process due to a Poisson random train of diffusion-enhancing

pulses

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 6027

(http://iopscience.iop.org/0305-4470/25/22/026)

Download details:

IP Address: 171.66.16.59

The article was downloaded on 01/06/2010 at 17:35

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/22
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 25 (1992) 6027-6041. Rinted in the UK 

A modification of the Wiener process due to a Poisson random 
train of diffusion-enhancing pulses 

V BezAk 
Department of Solid State Physics, Comenius University, 842 15 Bratislava. Slovak 
Republic, CSFR (Czechoslovakia) 

Received 3 February 1992 

Abstract. A Poisson-modified Wiener process is considered. Its conditional probability 
density is calculated exactly. Various forms of the evolution equation are derived for the 
case when the initial probability density is arbitrary. A generalization is .also treated when 
this equation contains a term analogous to the potential energy term in the Schr6dinger 
equation. The Green function ofthis equation is derived in the form o f a  functional integral 
which may be considered as a direct generalization of the Feynman-Kac integral. An 
application is suggested in the theory of quasiparticles with a non-parabolic dispersion law. 

1. Introduction 

In the present paper, we shall describe a multiplicative stochastic process combining 
two processes: the Wiener process (i.e. classical Brownian motion) with a diffusion 
constant D and a Poisson random train of equal, very short-lasting, but highly 
diffusion-enhancing, pulses. The duration T~ and the diffusion coeficient D, of each 
pulse, respectively, are assumed to tend to zero and infinity. The product 

Dprp = M (1) 
for T ~ + O ,  LJP+m, however, is kept constant. We call M the strength of the pulses. 
For brevity, we shall speak of M-pulses. The second parameter defining the Poisson 
irain of the puises is their average frequency P. Thus, our muiiipiicaiive process is 
defined altogether by three positive constants: D, M and U. The problem dealt with 
in this paper has been suggested by Laskin (Laskin 1989). Our problem is a generaliz- 
ation of Laskin's: our process is reduced to his if D+ +O. 

Laskin's motivation to put forward a theory of non-Gaussian diffusion was related 
to his theory of channelled relativistic electrons in crystals. In one of his two models, 
he attributed the dechannelling of the electrons to short, but active, fluctuation regions 
forming a Poisson random-layered structure in any channel. Each layer was taken with 
the same thickness, the value of which was small in comparison with the average 
distance between the layers. Then an electron travelling with some velocity across the 
crystal (along a channel) is subjected to shocks (pulses), the distribution of which in 
time is Poissonian. That is why Laskin's 'spatial terminology' (the Poisson layering) 

we prefer. 
T h e  scope of the present paper is as follows. In section 2 we recall some basic 

results of the classical theory of Brownian motion. Afterwards, in section 3, we define 
the main topic which we are concerned with in this paper-the Poisson-modified 
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is in confnn?lity with the 'tempo"'! terminology' (the Pnisson !rain of the pu!ses) which 
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Wiener process #(u)-hy using a diagrammatic method. This method is analogous to 
the summation over Feynman's diagrams that is so well known in quantum theory. 
For the process [( U), we derive the conditional probability density P ( x ,  f 1 x, ) .  In section 
4 we calculate all the cumulants of the random variable x, thus showing explicitly that 
the process [(U) is non-Gaussian. It is, however, Markovian (section 5 ) .  In section 6 
we derive three formally different, but essentially equivalent, versions of the evolution 
equation for a general probability density $ ( x ,  f )  concerning some ensemble of simul- 
taneously running processes #(U) (in the sense that each process [(U) may start from 
its own point of departure so that the initial probability density $(x,O) = $, (x)  need 
not be the delta function centred at some fixed position xo) .  In sections 7 and 8 we 
present a functional integral form for P ( x ,  t lx , )  (i.e. in fact, for the Green function 
of the evolution equation(s) derived in section 6 ) .  In particular, we generalize the 
equation(s) by considering, in section 8, a term resembling the potential energy term 
in the Schrodinger equation. So, P ( x ,  flx,,) becomes a functional of a 'potential' V ( x ) .  
Our functional integral representation of P ( x ,  f I xo)  (actually an infinite product of 
integrals-a 'product integral') generalizes the Feynman-Kac integral known from the 
classical theory of Brownian motion and from quantum mechanics. In section 9, we 
propose an application of our process [(U): we can model the dynamics of quasi- 
particles if their dispersion law (i.e. the dependence of their energy on their wavevector) 
exhibits a certain kind of deviation from parabolicity. Finally, section IO is a summary. 

2. Some preliminaries concerning the classical diffusion process 

Let Go(x, f Ix,) be the probability density of a Brownian particle starting at  to= 0 from 
position x,. (We will confine ourselves to one-dimensional problems in the present 

cf Wax 1954), Go obeys the diffusion equation 
pape;.) '"'e assiiEe :'.a: t 2 0 a& --m < x i  -m. As W89 shown by Einstein i.. !905 (e.g. 

JGo(x, f l x , ) / J t = D J 2 G 0 ( x ,  f l x o ) / d x 2  ( 2 )  

G , (x ,  +01 x0) = 6 ( x  - X , ) .  . (3) 

and the initial condition 

Obviously, 
m 

dx G,(x, f I xo) = 1. (4) 

If the particle moves in a medium where it may become immobilized or annihilated 
with a rate V ( x )  2 0, we may write a generalized equation: 

( 5 )  J G ( x ,  f l X O ) / d t = D 8 G ( X ,  f ( X o ) / J X ' -  V ( x ) G ( X ,  t lxo).  

(A certain interpretation of equation ( 5 )  can be invented even if V ( x ) < O :  we may 
imagine a generation of diffusive particles in the medium.) If V ( x )  does not vanish 
everywhere, condition (4) need not be satisfied. The fundamental solution to equation 
( 5 )  can be written in the form of the Feynman-Kac functional integral (path integral): 

G ( x ,  +O( x O )  = S ( X  - x,). (7) 
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Here we have used the notation customary in Feynman’s formulation of quantum 
mechanics (Feynman and Hibbs 1965, Papadopoulos and Devreese 1977, Schulman 
1984). In the mathematical theory of stochastic processes, this notation may be used 
(Kac 1967) if one abstracts from such fine notions as the Wiener measure (Yeh 1973, 
Hida 1980). The factor N ( t )  is a (positive) normalizing coefficient and f ( u ) ,  for 
0 s  U S  1, is an arbitrary path connecting the end-points ( ( 0 )  = xo and t(r) = x. If the 
time is discretized, then-using E = t /  N, U, = l e ,  5, = c(uj)-we may write the multiple 
integral 

provided that N +m and to= xo, .& = x. Thus, &U;) is understood as (&+,-&)/E. (In 
the Wiener theory, the terms with &(U,) are incorporated in the Wiener measure.) Note 
that all the integrals {du correspond to the It6 definition of the stochastic integrals 
(e.g. cf Ikeda and Watanabe 1981). In our further formulations in this paper, there 
will be no necessity to distinguish between the It6 and Stratonovich integrals j d u  (e.g. 
cf Gardiner 1986). When employing the N-approximation, we may rewrite G in the 
form of the product integral 

(with tN = x) where 

r- -..A.- .‘, L.11 I - ~ I ~ ~ .  . .._... .!--..~ ~ . . - . . & . - ~ ~ - . , A \  ~ . ~ ~ . . ~ ~ . . ~ . ~ . ~ ~ ~ I . ~ ~  m sccuon o, we snaii uerive a gencrauzanon UI integral {Y)  snowing now m e  parameter 
M enters the functional integral theory devised for our multiplicative process ((U). 

3. A diagrammatic method of defining the Poisson-modified Wiener process 

Let us introduce a time-varying diffusion coefficient D ( t ) .  Then we may write the 
equation 

JG(x, t l x o ) / a t = D ( t ) J 2 G ( x ,  f1x,)/ax2 (11) 

G(x, O I X J  = S(X -xo). (12) 

(We take V ( x ) = O  for simplicity.) Now let us define D ( t )  as a two-state stochastic 
process. This means that D ( f )  may acquire two constant values which we denote as 
D and D, ,OcD<D, .  So let two Wiener processes be alternating: one with the 
coefficient D, one with the coefficient D,. For brevity, we say that the Brownian particle 
may exist either in the D-state or in the D, state. Let 1: be any time instant when the 
particle begins to dwell in the D-state and f? the next time instant when the particle 
leaves this D-state, going over into the D, state. We define 1:- f? as a Poisson random 
variable so that the average duration of the D-state is 

(fp- t?) U Iom dTT eXp(-UT) U-’. (13) 
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(We shall use the brackets ( ) to  denote averaging with respect to the Poisson randomness 
of D(f).)  The duration of the D, state is kept constant. 

The formal solution of equation (11) is 

G ( x , f l x o ) = -  dkexp[ik(x-x,)]exp -k2 dTD(7) . (14) 

The function G(x, fix,,) is stochastic, owing to D(T). Nevertheless, the probability 
27r Im _m ( I: 1 

densi!y meaning is maintained. 
m 

dxG(x, fix,) = 1. ( 1 9  I_, 
It is, therefore, natural to deal with the averaged density function 

P ( x ,  t I~o)=(G(x ,  flxo)). (16) 

We might also define more expressively the probability densities P J x ,  t lxo)  by a 
conditional averaging: 

Pr,(x, tlxo)=(G(x, f l ~ o ) ) , - r .  (17) 
The indices i, f correspond here to two (possibly identical) states: S, and Sr-the initial 
state at time f o = O  and the final state at the time t > O .  Thus, in general, if U, T~ are 
both non-zero and finite, there are four possibilities for the ‘transitions’ i + f D + D, 
D+ D,, Dp+ D, Dp+ D,. Then we expect fulfilment of the condition 

m 4: j-, dx P A X ,  1 I xd = 1 (18) 

where the sum runs over the two states D and Dp,  whilst the fixed index i may he 
either of these two states. However, as we take into account the limiting case when 
T,++O, our further analysis is reduced to the sole relevant transition: D+  D. In this 
situation, we identify PDD with P. 

That is why, when discussing the probability density (16), we may say that P ( x ,  f I xo) 
is given by the sum over the graphs which are depicted in figure 1. According to 
formula (14), the graphs in figure 1 correspond to the function 

The horizontal direction in each graph corresponds to the time variable T running 
from T~ = 0 to T ~ =  f. (That is why each graph is depicted with the same horizontal 
length.) The arrows symbolize a propagation: the lower arrow in the D-state, the upper 
one in the Dp state. When all such graphs are exhausted (with all possible ‘interstates’), 
then-by summing up the contributions due to all the graphs-we can obtain the 
function pDD(k ,  f) exactly. The lengths of the lower arrows (in the graphs with the 
‘interstates’, i.e. except in the first graph) are random and the upper arrows have the 
constant length 7,. After the limiting procedure (l), the upper arrows cease to exist 

Figure 1. Graphs defining the probability density PDD(x, fixo). 
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but we must duly take into consideration the M-pulses. Each M-pulse puts the same 
factor U exp(-k2M) ineach termofthe functionp(k, t )  calculated according to formula 
(19). (From now on, we omit the indices DD.) If a graph involves n M-pulses, their 
total contribution in the corresponding term of p ( k ,  I) is U" exp(-nk2M). This is our 
first rule. The second rule of our diagrammatic method is the definition of 'propagators' 
between two M-pulses: we confer the function eXp[-U(T;-T:)] exp[-k2D(T;- r:)] to 
each arrow (in our case, some lower arrow only) starting at time 7: and ending at time 
7:. Indeed, the expression U exp(-u~)  dT equals the probability-according to the 
Poisson statistics-that there is no M-pulse within the interval (0, T )  and afterwards, 
within the interval (7, T+dT), there is just one M-pulse ending the former D-state. As 
the time instants of the M-pulses are random, our third rule says that we must integrate 
with respect to all the instants. In this way, we obtain the series 

r \  n l t  1 ,l=pynl-utlrxnl-lr2_n!!+v . I  -..I.\ -.,-.-r\ ,, C' A?. -., eun(--l,- ~,.~, - . I ,  \ ,v-(-k2n- ~ - ~ ,  -,,, \ a r n ( - ~ Z ~ i  -'L~, ,. '.., 
X exp[-u(t - T , ) ]  exp[-k2D(t - T I ) ]  

X eXp[-v(Tz- TI)] exp[-k2D(T2- T I ) ]  

x exp(-k2M) exp[-u(t- T ~ ) ]  exp[-k2D( t - T ~ ) ]  +. . . . 
So that we can write 

= exp[-{u[l -exp(-k2M)]+ k2D)rl. (20) 

When this function is inserted into formula (14) and the integration with respect 
to k is carried out, we obtain the result 

Evidently, if M+O, then we obtain the simple Gaussian of the classical theory of 
diffusion: 

M-0 lim P(x, tlxo) = T(x-xo, 201). (22) 

We have used 

here. Each term in series (21) is positive. For all values of M Z O  (as well as for all 
values of xo and t P 0), we can directly check the identity 

m 

dx P(x, t I xo) = 1 
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so that P, as we expected, is undoubtedly a probability density. For M > 0, formula 
(21) shows that P is a linear combination of an infinite set of Gaussians 

However, the linear combination of different Gaussians is no longer a Gaussian. This 
proves that P(x, t Ixo) describes (with the exception of the limiting case when M = 0) 
a gen.;ine non-Gaiijsiai; piacess. 

4. Cumulants of the end-point x 

When attention is focused on the random paths f ( u )  (OS U S  f ) ,  then the most natural 
idea is to theorize using the stochastic differential equation describing them. For our 
process, this equation reads 

& U )  = (2D(u) ) ’” f (u )  ( 2 6 )  

where 

S(0) = xo (27) 

is fixed. The RHS of equation (26) involves the standard Gaussian white-noise function 
f ( u )  (centred to zero) and the Poisson-type process D ( u )  defined above. (Clearly, 
D ( u ) ” ~  is a process of the same type as D ( u ) ,  with two values, D1” and Di’2, before 
the limiting procedure (1) is applied.) We may interpret ,$(U) as a multiplicative process 
since when we have to average any functional F ( [ ( u ) } ,  we must meticulously say 
whether we have in mind the averaging ( )G with respect to the Gaussian processf(u), 
which is defined by the conditions 

( f ( u ) ) c  = 0 ( f ( u , ) f ( u 2 ) ) o =  S(u , -u2)  ( 2 8 )  

or the averaging ( )p  with respect to the Poisson process D(  U) defined by its parameters 
M and v. Or we may have in mind the total averaging: 

I \ \ - I /  I - \ \  \ \ 
/ P I G - \ \  -11 \ / G I P .  \ (20) 

With these definitions, we can identify the functions G, P (cf formulae (14) and (16)) 
as the following average values: 

(30) 

(31) 

Obviously, if the time f > 0 is kept constant, the end-position 5( f )  = x is a single random 
variable. For each realization of D ( u )  (i.e. if we choose any deterministic positive 
function for D(  U)), the process is still Gaussian. The non-Gaussian nature arises, of 
course, from the Poisson statistics of D(u) .  

We will now calculate the cumulants of the random variable x. Because of the 
translational invariance of the probability density P ( x ,  t 1 xo), we may take xo = 0. TO 
define the cumulants, we introduce the characteristic function 

G(x, f I xn) = (S(X - 5(t)))c 
P(x, t I Xn) =(G(x, f I Xn))P=(a(X-S(f))). 

m 

X ( u ,  f )=(exp(ax))= dxexp(ax)P(x, tioh ( 3 2 )  
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Let us take 

X(- iS 1 )  =p(k, 1).  

Indeed, 

P ( x ,  110) = - J m  dk  exp(ikx)p(k, 1). 
257 _m 

The nth cumulant c. is given by the expression 

(33) 

(34) 

From expression (201, we see that 

In p ( k ,  1 )  = -{u[l -exp(-k2M)]+ k2D}1. (36) 
As ibis funciion is even in k, aii cumuiants wiih an odd index i n  - i ( n  = i, 2, . . . j are 
equal to zero. For the first even index we have the result 

(37) c2(1) = 2( uM+ D ) f .  
For the remaining cumulants c2,, with n > 1, we have the formula 

d2" exp( -p2) 
C, . ( l )= ( - l )"ufM" 

dp2" I * = o  

(We have taken Mk2=pz.)  On taking into account the definition of the Hermite 
polynomials, 

d2" 
dp'" L ( P )  = e.v(pz) - exp(-d)  

we see that 

c2.(f)=(- l )"u1M"H2.(0) .  

H2"(0) =(-1)"2"(2n-l)!!  

C 2 " ( t )  =(2n-l)!!(ZM)"ut (38) 

The values H Z n ( 0 )  are well known: 

where (2n - l ) ! !  = (2n - 1)(2n - 3 ) .  . . 3 ,  1 .  Thus, we have obtained the result 

for n = 2 , 3 ,  .... 
It is interesting that all the cumulants cz. of our non-Gaussian random variable x 

are proportional to the time f. Only in the limiting case when M + +0, the random 
variable x becomes Gaussian. (That is, the Gaussian nature is defined by the property 
that all cumulants, except cz ,  must vanish.) 

5. The Markov property 

The multiplicative process ((U) (for which we have coined the designation Poisson- 
modified Wiener process) is Markovian. This property of the process [(U) is rather 
obvious. If 1, is any intermediate time ( 0  < t I  < 1 ) .  the Fourier component p(k, 1 )  of 
the probability density P ( x ,  t l x 0 )  (cf integral (34)) fulfils the identity 

p ( S  t )=p(k,  t , ) P ( k ,  t - f l )  (39) 
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(cf expression (20)). By applying the convolution,theorem, we can at once prove the 
Chapman-Kolmogorov identity 

m 

P(x. l lxo)=j-,dxl P(x, f - f l l x l )P (x l ,  fIIxo) (40) 

which is the necessary attribute of any Markov process. 
If we dissect the time interval (0, 1 )  into N equal subintervals of length E = t / N  

and apply (N - 1)-times the Chapman-Kolmogorov identity, we obtain the product 
integral representation 

P(x, t I xu) = jm dx, Im dx, . . . dxN_, P(x, E I xN-,) 
-m -m 

X P ~ X N - I ~ E ~ X N ~ 2 ~ ~ ~ ~ P ~ ~ 2 r ~ ~ X ~ ~ P ~ ~ ~ ~ ~ ~ ~ O ~  (41) 
assuming that the short-time functions P (  . , E I . ) are given in their explicit form in 
advance. The short-time functions P can, of course, be given by the sum (25). In 
section I, we shall show, however, that for a good definition of the short-time function 
P (i.e. for E + +O), it is sufficient to consider the first two terms in the sum (25). 

6. Three forms of the evolution equation for the probability density 

In this section we shall pay attention to the problem of formulating the equation 
describing the evolution of a density profile $(x, t )  provided that the initial profile 
$(x,O) is known. The function P(x, rlxJ which we have calculated in the previous 
sections plays the role of the Green function of the evolution equation for $(x, 1 ) :  

m 

$(x, 1 ) =  (_,dxo P(x, tlxO)$(XO,O) (42) 

(note the linearity!). We may start from the equation 

~- t ) -  -{v[l  -exp(-k2M)]+.k'D}p(k, t )  
Jt 

(43) 

(whose validity follows from expression (20)). 

6.1. The cumulant expansion form 

From equations (33) and (36) we know that 
- {  v[ 1 -exp(-kZM)]+ k2D}f = In X(-ik, 1)  

so that 

JpW, f) /Jf  = [ ( U t )  In X(-ik, 1)l ~ ( k ,  1). 

After developing In X(-ik, t )  into the McLaurin series around the point k=O, one 
obtains the equation 

Hence, when replacing k by the operator -iJ/Jx, we obtain the equation 
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where the cumulants c l n ( t )  are given by formulae (37) and (38). By inserting them 
into equation (44), we obtain the equation 

and, owing to the linearity of relation (42), also the equation 

This evolution equation has to be solved with respect to the prescribed initial condition 

+(x, 0) = $o(x). (47) 

In our case when we consider the whole x-axis, it is only required that the solution 
Six, t j ,  with aii its x-derivatives, must tend to zero it jxj+oo. Then the soiution is 
unique and reads 

m 

+ ( ~ , t ) = ~ ~ ~ d x P ( x , ~ O r ~ ) d ~ ( x ~ )  (48) 

where P(x, t l x o )  is given by expression (21). 
Formally, equation (46) is a functional differential equation (an equation containing 

an infinite number of differential operators). Its formulation is not superfluous since 
equation (48) with sum (21) is not validated in cases when boundary conditions play 
a role (when the process runs on an x-semiaxis or in a finite region). In such cases, 
expression (21) is no more the fundamental solution of the problem (since P ( x ,  t l x o )  
must be found with respect to the boundary conditions) but, notwithstanding this, 
cquauuir \+OJ LLSFU SLUI IIUIUI. W F  will  i i u ~  UIICUSS pruuirriia wiin ouuiruary sunui~iur~s 
in  this paper (see, however, the indications in section 6.2). 

second,order parabolic partial differential equation describing classical diffusion. 

:._ ,”<, .... Io..:., L-,>. ..I. ... :,* _^I 1: ...... _.^L,._. ... :.L L 1 .... A!.!.-. 

It is seen directly that if M + +0, then equation (46) becomes the well-known 

6.2. The integrodifferential form 

This form has been preferred by Laskin (1989) for D = 0, and can be straightforwardly 
derived if one applies the convolution theorem to equation (43). In this way, we have 
obtained the equation 

where we have used equation (23) for the Gaussian r. Evidently, 

r(x-x’, 2 ~ ) -  s ( x - x ’ )  (50) 

for M++O and so again (of course) equation (49) becomes the classical diffusion 
equation. 

If D = 0, equation (49) resembles a master equation. This is the case studied by 
Laskin; in his words, the equation has a ’Boltzmann structure’. Our fundamental 
solution to equation (49) (i.e. the series (21)) generalizes his equation (3.9) (Laskin 
1989). 
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After multiplying equation (49) by $(xo, 0) and integrating over xo, we obtain the 
evolution equation 

J2+k 1 )  
J f  ax2 ' 

-- dx'[r(x-x', 2M) - S(X -x')]+(x', t )  + D 

If a boundary (or two boundaries) is (are) present, then in the integral term of equation 
(51), we may use the analytical continuation of $(x', f )  (in x') even outside of the 
region for which we seek the solution +(x, 1). The absence of other differential 
x-operators than J2/x2 indicates that there will be practically the same boundary 
conditions (usually two) as for the diffusion or heat-transport equation (Carlslaw and 
Jaeger 1959) or for the Wiener process (Ikeda and Watanahe 1981, Gikhman and 
Skorokhod 1977, Gardiner 1986). 

6.3. The integral form 

Until now we have used equation (42) in its role as a linear relation between the 
functions P(x, fixo) and +( , f ) .  We may, however, use it as an integral equation for 
+(x, 1 )  with the kernel P(x, f Ixo) known a priori. Therefore, we write for any time 
instant f,, such that t >  f , > O ,  the equation 

m 

4 4 ,  t)=[-_dxoP(x, f--foIxo)+(xo, t o ) .  (52) 

(Of course, if +(x,O) is known, this does not mean that +(x, to) is also known in 
advance.) 

We can prove the equivalence of equation (52) with equation (46) as follows. We 
take E > 0 as an infinitesimal time increment and write 

We take the Taylor developments 

E +  ... J$(x, 1 )  +(x, f + &) = +(x, E) + - 
at 

After setting the latter series into the RHS of equation (53) and carrying out, term by 
term, integration with respect to 5, utilizing the well-known results for the Gauss- 
Laplace integral, 

m 

d5t2"-' exp(-a,c2)=0 

L J -m 

m = I ,  2 , .  . . , where, in our case, 

1 
4( DE + n M )  

a. = a.(€) = 
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we obtain the RHS of equation (53) as a function of the variable E. Paying heed to the 
smallness of E, we may develop this function in E around zero, retaining only the 
zero-order term and the term linear in E. So, when comparing the coefficient at E on 
both sides of equation (53), we obtain equation (46). 

1, A simplified form for the functional integral representing the probability density 

For small values E > 0, it is sufficient to use the function 

P(x", ~Ix ' )=exp(-~~)("x ' ' -x ' ,   DE)+ uer(x"-x', 2 M ) )  (54) 
instead of the full sum required by expression (21) for values of t which are not 
infinitesimal. For Gaussians it is easy to calculate the Fourier transform and so, 
according to formula (34), we can get the function 

p(k, t )  =exp(-u&)[exp(-k2DE)+ UE exp(-k2M)]. 

In contrast to the multiple convolution represented by the RHS of equality (411, the 
Fourier transform for P(x, tlx,,) (by the convolution theorem) is much simpler: 

for N + m ,  E=I/N+O. However, 

I" lim [ I" =exp(-k2Dt) 
N-0 

=exp(-k2Dt) exp[vt exp(-k2M)]. 

Thus, we have duly verified the t-dependence, as  derived above for p(k,  t )  (expression 
(20)). For M + +0, the Gaussian r(x"- x', 2 M )  in equation (54) is reduced to the 
delta function, S(x"-x'). Nevertheless, the component p ( k ,  t )  does turn out to equal 
the simple exponential exp(-k2Dt), as has to be the case for classical Brownian motion. 

8. The functional integral of the Feynman-Kac type 

It is easy to include the rate function V(x) (cf. section 2)  in our equations: 

The integral equation equivalent to equations (55) and (56) remains in the form of 
equation (52). We want only to indicate explicitly that the kernel is a functional of 
the function V(x): 

m 

$(x, I )  = I-, dx, P,,,& 1 -  tOlxO)$(xo. (0) ( 0 s  tOc 1 )  (57) 

P{"t&, +Olxo)=~(x-X0).  (58)  



6038 V Bezdk 

By replacing, in formula (9), the free-diffusion function 

Gu(x", ~ I x ' ) = r ( x ' ' - x ' ,  2 0 ~ )  

by the function P ( x " ,  E I x ' )  defined by expression (54) we can write down, in the 
N-approximation, the product integral 

p,",,,,(x, tlxo) 

/ N - I  r -  
=exP(-vf) II ~G(~(~,+,-~,,~DE)+UET(G+,-(~,~M)) \ j=u J-- 

xexP(-EV(b))) aco-xo) (59) 
with cN = x, E = t/ N. 

Apparently, expression (59) represents one of the simplest generalizations of the 
Feynman-Kac integral. To prove that we may use the product integral (59) in equation 
(57), we rewrite the latter in a form suited to the infinitesimal increment E > 0: 

m 

$(x, ?+E) =eXp(-UE) exp(-V(X)E) 

f uEr((,2M))$(xf(, 1 ) .  

As E is small, we take 

exp(-ue) = 1 - YE exp(-EV(x))=l-EV(x). 

When taking into account the Taylor development 
m 

$ ( x + ( ,  I ) =  1 ( # " / n ! ) J " $ ( x ,  ~ ) / J x "  
n-1 

after performing the (-integration in (-00, a) and using the formulae 

d ( t 2 r ( t ,  u2) = U* I d( r((, u2) = 1 I 
r . . . , " - I  . - . . , 
J dtf"' ' l ' ( t , Z Z M j = i j  aff-"i(f , ,ZMj=(ZMj"(Zn-- i ) i l  

we can observe that equation (60) becomes the functional differential equation (55). 

9. Suggestion of a quantum mechanical application: Quasiparticles with a 
nnn-parabolic dispersion law manifesting a point of inflexion 

Let 

E = E ( k )  (61) 

be a dispersion law for a certain kind of (non-interacting) quasiparticle (we have in 
mind a one-dimensionai prohiem). We assume that t ( k j  IS defined on the whoie k-axis 
as a real (even) analytical function, such that E ( k )  + m for Ikl+ m, If the quasiparticles 
move in a field with a potential energy V(x) (-m < x < m), we may he interested in 
their canonical density matrix C,(x, xu) (Feynman 1972). For the latter, we can write 

_I .  ~. 
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down the Bloch equation (in the Wannier approach, say, as we consider a non-parabolic 
dispersion law (61) and then an effective mass of the quasiparticles): 

c+o(x,~o)=s(x-xo). (63) 

The canonical density matrix yields rich possibilities for quantum-theoretical calcula- 
tions. Our intent here is to suggest that equation (62), with some adequate choice of 
the dispersion law (61), can become fully compatible with the theory of the Poisson- 
modified Wiener process dealt with in this paper. In equation (62), the thermodynamic 
parameter p = 1/ k,T plays the same role as the time variable t in the previous sections. 

If the dispersion law is parabolic, 

E =  Ep(k) =(h2/2m)k2 (64) 

with the effective mass m>O, then C,(x, xo) can be represented by the Feynman-Kac 
integral. According to the theory described above, there is a further step for one special 
class of non-parabolic dispersion laws. We have in mind the function 

E=E... . , (k )=4k2+b[1-exp( -ck2)J  (65) 

with three positive constants-a, b and c. We can express C,(x, xo) in the form of our 
generalized Feynman-Kac integral (product integral (59)). Then 4 is related to the 
diffusion coefficient D, b to the Poisson frequency Y and c to the parameter M. 

The class of functions (65) is especially interesting for the following reason: with 
suitable combinations of the constants a, b and c, the curve E = Enom.p(k) has two 
points of inflexion. The existence ofpoints of inflexion is a feature of realistic dispersion 
laws. In particular, the function Enon.,,(k) may define the energy band of conduction 
electrons in a one-dimensional semiconductor. If we study a dynamic problem in which 
we can neglect the behaviour of the actual function E ( k )  for high values of lkJ (for 
which EnOm.Jk) becomes unrealistic), we can try to fit the modelling function EnOn.Jk) 
with the known function E ( k )  on an interval O < k < K .  The value K does not need 
to be as small as in the case of the parabolic modelling function E,(k) and a good fit 
can be reached. The fitting can be carried out, for instance, as follows. We fit the 
effective mass at ko=O; this gives the equation 

h2 

If k, is the first value of k where the curve E = E ( k )  exhibits the inflexion, we can 
require that k, is also the position of the inflexion point on the curve E = Enon.p(k) 
and equalize both the energies, E, and E.,,.,, at k = ki. This gives the equations 

a k : + b [ l - e x p ( - c k : ) ] = E ( k i )  (67) 

a +  bc(l-2ck:)exp(-ck;)=O. (68) 

(The value ki results from the conditions: JZE/ak2 = 0, JE/dk > 0. Equation (68) is the 
explicit transcription of the equation d2E.,..,/Jk2 = 0.) 
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It should be pointed out that there are also other reasonable possibilities to obtain 
the 'best' fit between E ( k )  and Enon.,(k). We refrain from a further discussion of this 
problem here. 

10. Summary 

I n  the present paper, we have developed a theory generalizing, in a sense, the concept 
of the Wiener process. Our modification of the Wiener process consists of the idea 
that the basic (background) Wiener process, characterized by a diffusion constant 0, 
is accompanied by intercalatory Poisson random delta function pulses of equal strength 
M, applied stationarily (in the statistical sense) with some averaged frequency U. Our 
process ((U) (with U within an interval (0, f)) therefore becomes multiplicative. To 
describe this process we have paid much attention to some rather formal mathematical 
questions, such as the calculation of the conditional probability density P(x>  t !xJ  
(where e(0) = x,, ((f) = x), the calculation of all cumulants of the random variable x, 
the verification of the Chapman-Kolmogorov equality proving the Markov property 
of the process, and so on. 

For a general density $(x, f) (with a general initial density profile $,(x)), we have 
derived three equivalent forms of its evolution equation. This equation has also been 
formulated with a term which (in two of the forms) corresponds to the potential energy 
term of the Schrodinger equation. We have succeeded in deriving a product integral 
for P(x,  f x,) which may be regarded as a generalization of the Feynman-Kac integral. 

The theory of the present paper was inspired by one of two models which were 
put forward by Laskin (1989). If Laskin's model is discussed from the viewpoint of 
our theory, it corresponds to the limiting situation when the process ((U) is formed 
solely by the Poisson random pulses, i.e. when the background Wiener process is 
absent. Certainly, the application proposed by Laskin-the dechanneling kinetics-is 
an attractive example where our theory could prove to be quite useful. 

In section 9 of this paper, on the other hand, we have proposed another application 
of the Poisson-modified Wiener process [(U): in a theory of quasiparticles (such as 
conduction electrons in crystals) whose dispersion law displays a point of inflexion. 
Although we have discussed the process ((U) as one-dimensional, it is easy to employ 
its two- or three-dimensional version. This means that our application suggested in 
section 9 need not be relevant only for 'quantum wires' but also for crystalline thin 
films, as well as for bulk crystals. 

Our last remark concerns the possibility which was suggested in section 3. Instead 
of the train of the Poisson random M-pulses and the background diffusion' with the 
constant coefficient 0, we may formulate another problem: when D(f) is defined as 
the two-state random process with two diffusion coefficients, D and D,, we may assume 
that not only the duration of the D-states but also the duration of the D, states may 
be defined as a Poisson random variable. In other words, we can imagine random 
transitions from the diffusive D-state. to the diffusive D, state and vice versa. We will 
analyse this problem in another paper. 
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